

National Aeronautics and Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Atmospheric Infrared Sounder on EOS Aqua Satellite

with Emphasis on Level 2 Products International Radiation Symposium

August 2004 Busan, Korea

S-Y Lee, E Fetzer, S Granger, B Lambrigtsen, E Manning, E Olsen, and T Pagano Jet Propulsion Laboratory California Institute of Technology E-mail: Sung-Yung.Lee@jpl.nasa.gov

AIRS on EOS Aqua

- Remote Sensing of the Earth's Atmosphere with radiosonde accuracy
- AIRS operates with two MW sounders, AMSU and HSB
- Dual Applications
 - Climate Research
 - Numerical Weather Prediction

The AIRS Viewing Geometry

- Aqua is on 1:30 PM ascending sun-synchronous orbit at altitude 705 km
- AMSU footprint, 45 km across at nadir, contains 9 AIRS spectra
 - This is the retrieval granularity.
 - 324,000 retrieval attempts per day
 - Successful AMSU/HSB sounding 90+ percent
 - Successful combined MW/IR sounding 40 - 60 percent
- Viewing swath 30 AMSU footprints or ~1650 km wide.
 - Covers most of globe everyday
 - Covers much of globe twice a day
 - 1:30 AM/PM

Spectral Coverage of Aqua Sounding Instrument Suite

AIRS Vis/Nr IR	4 channels 0.40 - 0.95 μm Footprint 2 km
AIRS InfraRed	2378 channels 3.7 - 15.4 μ m (650 - 2700 cm ⁻¹), $v/\delta v \sim$ 1200 Footprint 15 km, IFOV 1.1 degree
AMSU	15 channels 23 - 90 GHz Footprint 45 km, IFOV 3.3 degree
HSB*	4 channels 150 - 183 GHz Footprint 15 km, IFOV 1.1 degree

^{*} Stopped operating in Feb 2003

AIRS/AMSU/HSB Data Products

Radiance Products (Level 1B)	RMS Uncertainty*	Horizontal Resolution	
AIRS IR Radiance	3%	15 x 15 km	
AIRS VIS/NIR Radiance	20%	2.3 x 2.3 km	
AMSU Radiance	0.25-1.2 K	45 x 45 km	
HSB Radiance	1.0-1.2 K	15 x 15 km	
Standard Core Products (Level	<u>2)</u>		
Cloud Cleared IR Radiance	1.0K	45 x 45 km	Vertical
Sea Surface Temperature	0.5K	45 x 45 km	Resolution
Land Surface Temperature	1.0K	45 x 45 km ₁	km below 700 mb
Temperature Profile	1K		2 km 700-30 mb
Humidity Profile	15%	45 x 45 km — 2	km in troposphere
Total Precipitable Water	5%	45 x 45 km	
Fractional Cloud Cover	5%	15 x 15 km	
Cloud Top Height	0.5 km	45 x 45 km	
Cloud Top Temperature	1.0 K	45 x 45 km	

AIRS NeDT at 250K

S. Gaiser, JPL

Radiometric Stability of AIRS Channel 2616 cm⁻¹

Daily median and standard deviation of night (sst2616c6 - rtg.sst) for |lat|<40 degree ocean viewd at |sza|<35 degree. The median is - 0.64K, stable at the 5mK/year level

Spectral Stability of AIRS

Obs - Calc

- Clear ocean footprints
- Calculated from radiosonde observations
 - climatology was used to extend data to TOA
- Window regions are better than 0.5K

Luke Chen, Barney Farmer, Eric Fetzer (JPL)

Standard Product Activation / Validation Timeline

	Version Activation Date	3.0 9/15/03	4.0 10/15/04	5.0 10/15/05	6.0 10/15/06	7.0 10/15/07
Radiance Products (L1)		Ocean	Land	Polar	Global	Global
	AIRS Radiance	Prov	Val2	Val3	Va4	
	VIS/NIR Radiance	Prov	Val2	Val3	Val4	
	AMSU Radiance .	Beta	Prov	Val2	Va3	Val4
	HSB Radiance	Beta	N/A	N/A	N/A	N/A
Standard Products(L2)						
	Cloud-Cleared IR Radiance	Beta	Val2	Val3	Val4	
	Surface Temperature	Beta	Val1	Val2	Val4	
	Temperature Profile	Beta Prov	Val2	Val3	Va4	
	Humidity Products	Beta	Val1	Val 2	Val3	Val4
	Cloud Cover - Products	N	Val1	Val2	Val3	Val4

Beta = Not suitable for scientific investigations.
Consult with AIRS Project on regional status.

Prov = Provisionally validated. Useable for scientific investigations with caution. Validated for non-polar, night, ocean only.

Val1 = non-polar, day/night, ocean.

Val2 = Val1 + land.

Val3 = Val2 + polar

Val 4 = Global All Cases

Temperature and Water Vapor Accuracies

Temperature Profiles Accurate to 1K/km to 30 mb

Ocean, Mid Latitude vs ECMWF

Water Vapor Profiles Match Observations

Nauru Island Radiosondes

(E. Fetzer/JPL)

Cloud Clearing vs Hole Hunting

- Hole hunting retrieval works less than 10% of all AMSU observations
 - Less than 10 % of all AMSU observations over ocean have at least one clear AIRS footprint (H H Aumann)
 - Clear footprint means the effect of cloud on AIRS radiances is less than 1K.
- With cloud clearing, we can raise the retrieval yield to 40 ~ 60%
 - Cloud clearing works on non-uniform cloud cover with cloud fraction < 80%
 - Cloud clearing method tends to produce SST outliers
 - Cloud clearing assumption fails often even over ocean
 - SST outlier is defined to be abs(SST-Forecast) > 3K
- Numerical Weather Prediction applications require outlier rate of less than 1%
 - AIRS developed QC methods to reduce SST outlier rate to less than 1% without using forecast SST. The yield rate was about 30% over water.
- Climate applications require unbiased sampling
 - Cloud clearing implies retrieving around clouds, not through clouds

12

Cloud clearing works better with less cloud, and hence tends to be drier

New Quality Control for Version 4.0

- Old version (v3.5) outputs combined MW/IR products 40% of all retrievals
 - Otherwise outputs retrievals based on MW channels and stratospheric IR channels.
 - Includes retrievals with cloud fraction < 80%
 - RetQAFlag was used to remove SST outliers
- New version outputs combined MW/IR products when cloud fraction < 90% (84% of all cases) with quality flags indicating the validity of:
 - 1. Cloud parameters, OLR, water vapor, ozone, T(p) above certain height (currently 200 mb) (84%)
 - 2. T(p) above certain height (currently 3km above surface) and land surface(54%)
 - 3. T(p) for the lowest 3 km (28%)
 - 4. Surface skin temperature over ocean (12% of ocean cases)

13 3/20/2006

AIRS Level 3 Products

- Gridded data products at 1 degree by 1 degree resolution
 - Separate Ascending/Descending global grids
 - MW only products as well as combined MW/IR products
 - 8 day and monthly as well as daily
 - Will be released to public in version 4.0, Winter 2004
 - Mean, count, and standard deviation
 - Plan to add quantization products
 - Statistical distribution of data points within a bin
- Level 3 parameters
 - Temperature and water vapor profiles
 - Surface parameters (skin temp, spectral emissivity)
 - Cloud parameters (cloud fraction, cloud top pressure)
 - Outgoing Longwave Radiation (cloudy and clear)
 - Total column of water vapor, ozone, cloud liquid water

S Granger

14

National Aeronautics and Space Administration

Jet Propulsion LaboratoryCalifornia Institute of Technology
Pasadena, California

Level 3 Sampling Issue

Monthly Mean Total Precipitable Water Vapor (Descending, RType < 100, MW Only)

- Top: Total Precipitable Water
 Vapor for all accepted cases
 - Combined MW/IR retrievals
 - Global (ocean grid points between 50N and 50S) mean of 28.92 mm
- Bottom: MW Only Total Precipitable Water Vapor
 - Global mean of 34.32 mm
- The difference is due to MW only algorithm bias (~3 mm) and to sampling difference
 - Cloud Clearing works better when less cloudy, hence drier
- Even the lower figure is expected to have dry bias
 - MW only retrieval fails when precipitating

National Aeronautics and Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Monthly Mean Surface Skin Temperature

- Monthly mean SST for 2003(top left), 2004(bottom left) and the difference (above) for descending orbits
- Were Canada and Europe colder in 2004 than in 2003?

Outgoing Longwave Radiation from AIRS

- Monthly means from AIRS (lef) vs CERES (right) for May 2003
- Both are gridded at 2.5 degree resolution.

Ozone Validation

F W (Bill) Irion

Ozone map over polar night

QuickTime™ and a YUV420 codec decompressor are needed to see this picture.

- AIRS (left) vs TOMS (center) Total Ozone Column Amount for January 1st, 2003
- Movie (right) of daily maps of total ozone clearly show circulation around the night pole in January 2003

Near Realtime Weather Products over N America

Total Precipitable Water Vapor

700 mb Temperature

- •Click on daily weather maps in AIRS home page http://airs.jpl.nasa.gov/
- •This has near real time weather products over North America
- •These are sample maps for August 15, 2008 (Available on Aug 16)
- •We also track many hurricanes

Surface Skin Temperature

20 3/20/2006

Sounder Development at JPL

- T Pagano is involved with Ball Aerospace's development of Spaceborne InfraRed Atmospheric Sounder (SIRAS) on GEO/MEO
 - Grating Spectrometer
 - AIRS follow-on
 - Selected by NASA Instrument Incubator Program in January 2003
- B Lambrigtsen is working on Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR)
 - Also have applications on MEO
 - Channels similar to AMSU channels
 - Also sponsored by NASA IIP

21 3/20/2006